Shrink Files, Win Cash **The Hutter Prize Explained**

Francesco Gargiulo | April 11, 2025

Motivation

- What if improving text compression is not just about reducing file sizes?
- Good compression requires good prediction and good prediction requires understanding
- If a machine compresses Wikipedia better than anything else, what may this imply?
 - Understanding of patterns in language
 - Grasp of syntax and semantics
 - Ability of model context and handle ambiguity
 - Encoding of world knowledge

Primer on Data Compression

What is Data Compression?

- Finding shorter representations of data while preserving information
- Simple example: Run-Length Encoding

BBBBBBBBBRRRRRRRRYYYYYY

Randomness

Consider these three sequences:

- Would you say they "look random"? •
- What makes them <u>fundamentally</u> different?

314159265358979323846...

481927364511028374655...

Kolmogorov Complexity

- K(x) = length of the shortest program that outputs string x
- Examples:
 - Sequence of all 1s: Low complexity (tiny loop generates it)
 - Digits of π : Low complexity (can be computed)
 - Random-looking sequence: High complexity (needs explicit storage)

Kolmogorov complexity is uncomputable

Lossless vs Lossy Compression

- Lossless: Reconstructs original data exactly
- Lossy: Reconstructs an approximation of original data (e.g., JPEG images)

Q90 - 22 KB

- 2 KB ()

Codes and Codewords

- Let Σ be an alphabet of symbols (e.g., the English alphabet)
- A code C maps symbols $\sigma \in \Sigma$ to sequences of bits, named codewords
- Example: ASCII

 $C(a') = (01100001)_2$

Variable-Length Codes

- Problem: ASCII uses 8 bit per character regardless of frequency
- English letters appear with vastly different frequencies:
 - Common: 'E', 'T', 'A'
 - Rare: 'J', 'Q', 'Z'

- Solution: Assign short codewords to frequent symbols, longer codewords to rare ones
- Requirement: Codewords must be uniquely decodable

Variable-Length Codes

Historical Example: Morse Code (1830s)

$A \bullet J \bullet - - S \bullet \bullet \bullet$ $C - \bullet - \bullet \quad L \bullet - \bullet \bullet \quad U \bullet \bullet D - \bullet \bullet$ M - - $V \bullet \bullet \bullet -$ N – • W • – – $F \bullet \bullet - \bullet$ $O = - \bullet X - \bullet \bullet -$ G--• Pe--e Y-e-- $Q - - \bullet - Z - - \bullet \bullet$ $R \bullet - \bullet$

Optimal Codes and Contexts

- such that:
 - $\forall \sigma \in \Sigma$. (0)

- However, symbol probabilities depend on contexts, e.g.,

• Given an alphabet Σ and a probability distribution P, an optimal code C is

$$C(\sigma) \mid = \log_2 \frac{1}{P(\sigma)}$$

P("s" | "breakfa") and P("e" | "breakfa")

• Solution: Use a different code for each context (and its probability distribution)

Statistical Data Compression

A statistical data compression algorithm has two stages:

- 1. *Modeling*: Analyze data to estimate probability distributions
- 2. *Encoding*: Use entropy coders (e.g., Huffman or Arithmetic Coding) to generate the compressed output

The Hutter Prize

Prediction \rightleftharpoons **Compression**

- Consider this language comprehension exercise:
 - "After the accident, they rushed him to the _____"
- Why are you able to assign probabilities to words (e.g., § vs (1)?)
- What are the implications of a machine accurately predicting words?

- Two related papers:
 - 1. Delétang, Grégoire, et al. "Language modeling is compression." arXiv preprint arXiv:2309.10668 (2023).
 - 2. Shannon, Claude E. "Prediction and entropy of printed English." Bell system technical journal 30.1 (1951): 50-64.

The Human Knowledge Compression Prize

Challenge posed by Marcus Hutter in 2006: •

http://prize.hutter1.net/

- Goal: Compress a 10^9 bytes long Wikipedia dataset (*enwik9*)
- How: Submit a self-extracting archive encoding *enwik9*
- Prize: 5000\$ for every 1% improvement on the current best

- Why Wikipedia?
- Why lossless compression?
- What about neural networks?
- Why self-extracting archives?

Previous Records

Author	Date	Decompressor	Size (B)
Kaido Orav & Byron Knoll	3 Sep. 2024	fx2-cmix	110'793'128
Kaido Orav	2 Feb. 2024	fx-cmix	112'578'322
Saurabh Kumar	16 Jul. 2023	fast cmix	114'156'155
Artemiy Margaritov	31 May 2021	starlit	115'352'938
Alexander Rhatushnyak	4 Jul. 2019	phda9v1.8	116'673'681

Author	Date	Decompressor	Size (B)
Alexander Rhatushnyak	4 Nov. 2017	phda9	15'284'944
Alexander Rhatushnyak	23 May 2009	decomp8	15'949'688
Alexander Rhatushnyak	14 May 2007	paq8hp12 -7	16'481'655
Alexander Rhatushnyak	25 Sep. 2006	paq8hp5 -7	17'073'018
Matt Mahoney	24 Mar. 2006	paq8f -7	18'324'887

enwik9

enwik8

Conclusions

Key Takeaways

- Compression and prediction are two sides of the same coin
- The Hutter Prize isn't just about compressing files
 - An objective benchmark for machine understanding of human knowledge
 - A bridge between compression and modern Al

